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ABSTRACT
Compiler testing is critical and indispensable to improve the correct-
ness of compilers. Spurred by recent advancements in Large Lan-
guage Models (LLMs), LLM-based compiler testing techniques such
as Fuzz4All, have demonstrated their potential in uncovering real
bugs in diverse compilers and reducing the required engineering
efforts in designing program generators. Given the continuous evo-
lution of LLMs and the emergence of new LLM-based approaches,
establishing robust baselines is crucial for rigorous evaluation and
driving future advancements in this promising research direction.

To this end, we introduce Kitten, a mutation-based, language-
agnostic program generator. Kitten leverages a corpus of seed pro-
grams, analogous to the training set for LLMs, and utilizes the
target language’s syntax, akin to the knowledge learned by LLMs.
Furthermore, Kitten’s mutation operators can generate diverse test
programs, demonstrating a behavior analogous to the ability of
LLM inference to generate new code.

Our evaluations demonstrate that, using existing compiler test
suites as seed programs, Kitten outperforms Fuzz4All in terms of
code coverage and bug detection capabilities. Within 24 hours,
Kitten achieved 48.3%, 9.9%, and 33.8% higher coverage than Fuzz4All
on GCC, LLVM, and Rustc, respectively, while identifying an av-
erage of 19.3, 20.3, and 15.7 bugs in these compilers across three
runs. Over the course of nine months dedicated to Kitten’s develop-
ment and testing, we identified a total of 328 across the compilers
GCC, LLVM, Rustc, Solc, JerryScript, scalac, and slang, of which
310 have been confirmed or fixed. We strongly believe that Kitten
serves as an effective baseline, enabling the identification of limi-
tations within existing LLM-based approaches and consequently
driving advancements in this promising research direction.
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1 INTRODUCTION
Ensuring compiler correctness is paramount for the reliability of
all software systems, making compiler testing a critical and active
research area. Traditional approaches, which rely on manually en-
gineered random program generators to generate test programs
for specific languages [18, 30], have discovered numerous compiler
bugs. The recent surge in Large LanguageModel (LLMs) capabilities
has opened new avenues for automated test program generation.
Trained on massive datasets, LLMs exhibit a strong understanding
of programming languages, enabling the generation of diverse test
programs tailored to different compilers by prompting LLMs. Re-
cent LLM-based approaches [28, 29] demonstrate the potential of
using LLMs to generate random test programs for compiler testing.
Compared to traditional methods, LLM-based approaches offer a
significant advantage of language-agnosticism, enabling diverse
test program generation across various programming languages,
and substantially reducing the engineering effort required for de-
veloping specialized test program generation tools.

Prior work, such as Fuzz4All [28], has demonstrated promising
results in compiler testing, achieving higher code coverage than tra-
ditional methods (e.g., Csmith [30], YARPGen [18], and GrayC [6]).
We believe that the continuous evolution of LLMs will further en-
hance the effectiveness of these approaches. However, as pointed
out in [26], using traditional methods—especially language-specific
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program generators such as Csmith, YARPGen and GrayC—as eval-
uation baselines is subject to bias. These baselines were often de-
signed for different purposes: Csmith and GrayC, for example, focus
on generating well-defined programs with respect to the language
specification to find correctness bugs in compiler optimizations,
limiting the diversity of generated tests. In contrast, LLM-based
approaches like Fuzz4All aim to find compiler crashes and hangs,
potentially generating programs that are not well-defined or even
compilable. Due to these inherent differences in their objectives,
Fuzz4All was able to reach more areas of the compiler than the
traditional approaches.

To rigorously evaluate and guide future research on LLM-based
compiler testing, we propose using Kitten1 as a new baseline. Kitten
shares great similarities with LLM-based approaches. Both aim to
find crashes and hangs in compilers and thus do not guarantee
semantic validity of the generated tests. Second, Kitten is mutation-
based and requires a corpus of seed programs, analogous to the
training set for LLMs, and utilizes the target language’s syntax,
akin to the partial knowledge learned by LLMs. Kitten’s mutation
operators serve as an inference mechanism to generate new test
programs by leveraging the seed programs and the language syntax,
demonstrating a behavior analogous to LLM inference.

Our experiments show that Kitten outperforms Fuzz4All in both
code coverage and bug detection. Over 24 hours, Kitten achieved
48.3%, 9.9%, and 33.8% higher coverage on GCC, LLVM, and Rustc,
respectively. Beyond coverage, Kitten also performed well in bug
detection, identifying an average of 19.3, 20.3, and 15.7 bugs in
GCC, LLVM, and Rustc across three runs. Additionally, our results
confirm that Kitten achieves better results than the state-of-the-art
grammar-based fuzzer Grammarinator [9], reinforcing its effective-
ness in compiler testing. The results of our comparative experiments
highlights Kitten’s ability to uncover issues across diverse compil-
ers. Since its development, Kitten has discovered a total of 328 bugs
across multiple compilers for the languages of C, Rust, Solidity, JS,
Scala and Verilog. Among these, 310 have already been confirmed
or fixed.

We strongly believe that Kitten serves as an effective baseline,
enabling the identification of limitations and improvement oppor-
tunities within existing LLMs-based approaches and consequently
driving advancements in this promising research direction.
Contributions. We make the following main contributions.
(1) A language-agnostic compiler testing tool, Kitten, serves as a

simple yet effective baseline for LLM-based methods.
(2) A comprehensive experiment comparing Kitten and Fuzz4All

shows that Kitten achieves 48.3%, 9.9%, and 33.8% higher cov-
erage on GCC, LLVM, and Rustc, respectively, compared to
Fuzz4All. Kitten also identified an average of 19.3 bugs on GCC,
20.3 bugs on LLVM, and 15.7 bugs on Rustc. Additionally, Kitten
outperformed the grammar-based fuzzer Grammarinator, fur-
ther demonstrating its effectiveness.

1Kitten was first proposed in a preliminary, full research paper [26] to empirically
demonstrate the challenges in evaluating machine learning-based compiler testing
techniques. This paper presents the full technical details of Kitten together with
comprehensive new evaluation results, These results include the discovery of a total
of 328 bugs across various compilers, and a detailed comparison study with a novel
LLM-based compiler testing technique, Fuzz4All.
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Figure 1: Workflow of Kitten

(3) Kitten detected a total of 328 bugs across various compilers, in-
cluding GCC, LLVM, Rustc, Solc, JerryScript, scalac, and slang.

2 DESIGN
Kitten is a language-agnostic program generator, designed for de-
tecting bugs in various compilers. Figure 1 illustrates the workflow
of Kitten. Kitten takes as input a corpus of seed programs and
the grammar file of the target language specified in the Antlr for-
mat [20]. Kitten achieves its language-agnosticism by exploiting the
syntactical knowledge encoded in the grammar file, to build parse
trees from seed programs and to perform syntax-guided mutations
on top of the parse trees. Kitten’s reliance on the Antlr format for
language syntax enables broad language support for compiler test-
ing. Antlr possesses a large user community. With the contribution
from its user community, the grammars of many prevalent pro-
gramming languages are contributed and readily available within
the Antlr grammar repository [1], which consists of 546 grammar
files for 297 languages up to Jan 2025.

Specifically, the workflow of Kitten includes the following steps:
Step 1: Parse. Kitten uses the provided Antlr grammar to parse
each seed program into a parse tree. Each parse tree contains two
types of nodes: non-leaf nodes which represent non-terminal sym-
bols and leaf nodes which represent tokens.
Step 2:Mutate. Inspired by syntax-guided program reduction [25],
Kitten can leverage the syntactical knowledge encoded in the gram-
mar to perform mutations, which ensures the generation of syntac-
tically valid test programs. Kitten can also generate syntactically
invalid test programs to stress test compilers with invalid programs.
Step 3: Compile. The parse trees can be easily converted back
into programs, and then are fed to the compiler for compilation.
Step 4: Check. Kitten uses the abnormal behaviors of the com-
piler, including crashes and hangs, as oracles to detect bugs.

2.1 KEY FEATURES
2.1.1 Mutation. Kitten performs mutations at two levels: tree-level
and token-level.
Tree-Level Mutations. Tree-level mutations are applied to the
parse trees, ensuring that modifications maintain syntactic validity.
Inspired by NAUTILUS [2], Kitten employs the following tree-level
mutation strategies:
• Splicing: This mutation involves two parse trees. A subtree from
one parse tree is selected and used to replace a subtree in another
parse tree, resulting in a new tree.

• Replace: This mutation replaces a subtree in the parse tree with
a new one, generated based on the grammatical rules compatible
with the original subtree.
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Figure 2: Line coverage by Kitten, Fuzz4All and Grammarinator.

• Delete: This mutation removes repetitive structures in the parse
tree, such as lists and loops, which follow grammatical rules that
allow multiple repetitions.

• Repeat: This mutation generates a recursive subtree on a non-
leaf node in the parse tree. UnlikeReplace, the generated subtree
exhibits a clear recursive structure.

Token-Level Mutations. Token-level mutations operate on the
token sequence derived from the parse tree, encompassing three
types: insertion, deletion, and replacement. Unlike tree-level mu-
tations, these operators do not preserve syntactic validity, which
makes them effective for identifying bugs in the syntax analysis
components of compilers.

2.1.2 Execution Modes. Kitten supports two execution modes for
different testing needs. The first generates programs and feeds
them to the compiler on the fly, focusing on rapid bug detection
and retaining only inputs that trigger bugs, along with reproduction
scripts. The second stores all generated programs without requir-
ing a specific compiler, enabling later analyses such as coverage
measurement.

2.1.3 Multi-threading and Bug Management. Kitten includes prac-
tical engineering features to enhance usability and efficiency. It pro-
vides multithreaded code generation to maximize CPU utilization.
Further, The bug management of Kitten, including auto-reduction
and bug deduplication, save labor time by simplifying complex
bug-triggering programs and eliminating duplicates automatically.

3 EVALUATION
To establish Kitten as a suitable baseline for evaluating the effective-
ness of LLM-based techniques, we compare Kitten with Fuzz4All
and the grammar-based fuzzer Grammarinator to examine the fol-
lowing questions.
Code Coverage: How do Kitten compare to the other two tools
in terms of their overall code coverage and its distribution?
Bug Detection: How does Kitten compare to the other two tools
in terms of the number of discovered bugs?

We selected two programming languages, C and Rust, to evalu-
ate testing effectiveness, targeting their respective compilers, GCC
13.1.0, LLVM 19.1.6 and Rustc (commit 788202a). We utilized code
from each compiler’s test suite as seeds forKitten andGrammarinator,
carefully excluding test cases that inherently cause compiler crashes
or hangs to prevent redundant and meaningless bug reports. Since
Fuzz4All supports testing across multiple compilers, we extended

its functionality by implementing a Rust adapter, enabling it to gen-
erate test cases for Rust. In our experiments, we used the default
configuration from Fuzz4All’s public repository. To mitigate the
effects of randomness and ensure a fair comparison, we conducted
three independent runs for each tool under the same configuration.

3.1 RQ1: Code Coverage
Figure 2 illustrates the code coverage trends over 24 hours, compar-
ing Kitten with other tools. The solid lines represent the average
coverage, while the shaded areas depict the range of coverage vari-
ation. Among them, only Fuzz4All exhibits significant fluctuations.
Overall, Kitten achieves the highest code coverage among these
tools, particularly surpassing Fuzz4All by 48.3% on GCC, 9.9% on
LLVM, and 33.8% on Rustc.

Table 1: Line coverage of different components of GCC.
Front end Middle& Back end Other

Kitten 50,623 99,628 106,065
Fuzz4All 40,432 58,851 73,548
Grammarinator 45,481 87,484 98,550

Unlike traditional methods, LLM-generated code may fail to pass
language parsing, potentially increasing coverage in the compiler
front end. To investigate this, we analyzed coverage across the front
end, middle/back end, and other components of GCC. As shown in
Table 1, Fuzz4All does not outperform Kitten and Grammarinator
in any specific, suggesting that the programs generated using LLMs
fail to comprehensively stress certain parts of compilers, especially
the middle/back end, which can be improved by future studies.

3.2 RQ2: Bug Finding Capability

Table 2: Number of unique bugs detected in three runs over
24 hours.

GCC LLVM Rustc
Tool 1 2 3 Avg 1 2 3 Avg 1 2 3 Avg
Kitten 19 21 18 19.3 22 23 16 20.3 13 16 18 15.7
Fuzz4All 4 6 7 5.7 0 1 0 0.3 0 0 0 0.0
Grammarinator 13 11 9 11.0 6 6 3 5.0 5 3 3 3.7

The number of bugs detected is a critical metric for evaluating
compiler testing effectiveness. To avoid redundant results caused by
duplicate bugs, we used Kitten’s builtin bug management feature to
deduplicate them based on the call stacks of the compiler, obtaining
the unique bugs as shown in Table 2.
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In three 24-hour experiments, Kitten detected an average of 19.3,
20.3, and 15.7 bugs in GCC, LLVM, and Rustc, respectively. Fuzz4All
found 5.7 and 0.3 bugs2 in GCC and LLVM but did not detect any
bugs in Rustc. The grammar-based Grammarinator also detected
more bugs than Fuzz4All. We re-tested the bugs detected by Kitten
on the latest versions of the compilers and submitted 35 reports
for those that could still be triggered, of which 17 have already
been confirmed. Most GCC and Rustc bugs reported by Kittenwere
quickly confirmed by developers, whereas fewer LLVM bugs were
confirmed, consistent with the slower confirmation pace noted in
survey [24]. This result demonstrates the bug detection ability of
Kitten on the latest compilers.

Table 3: All bugs detected by Kitten in seven compilers over
nine months.

Compiler GCC
(C)

LLVM
(C)

Rustc
(Rust)

Solc
(Solidity)

JerryScript
(JS)

scalac
(Scala)

slang
(Verilog)

Bug Count 84 100 103 6 8 14 13

We also tested various compilers of diverse programming lan-
guages using Kitten. Over a total of nine months, Kitten detected
328 deduplicated bugs on seven compilers, as shown in Table 3.
These results strongly demonstrate the effectiveness of Kitten in
detecting compiler bugs across languages.

4 USAGE EXAMPLE
Kitten is intended for researchers and developers working on com-
piler testing. To use Kitten, a YAML configuration file is needed.
This file specifies the seed set, the compiler under test, compilation
flags, and the oracle used for validation.
# config.yaml
language: "C"
seedFolders:

- path: "/path/to/seed"
fileExtentions: [".c"]

programsUnderTest:
- command: "/path/to/gcc"

flagsToTest:
- flags: ["-x", "c", "-std=c2x", "-c"]

crashDetectorClassName: "GccCrashDetector"

Next, run the following command to start testing with the speci-
fied configuration, execution time, and mutation options.
java -jar kitten_deploy.jar \

--testing-config config.yaml --timeout 3600 \
--enable-splicing true --fuzzer-mode NORMAL_FUZZING

After execution, use the next command to organize detected
bugs into directories and remove duplicates. Finally, the report of
unique bugs is stored in the output directory.
java -jar kitten_organizer_deploy.jar --lang C \

--delete-duplicates true

5 RELATEDWORK
To test compiler correctness, numerous approaches to generating
test programs have been proposed. Csmith [30] and its various
variants [5, 15, 21] utilize language subsets or templates to generate
test programs. NAUTILUS [2], Gramatron [22], Grammarinator [9]
2Note that the number of Fuzz4All-found bugs in this paper is less than that reported
in the original paper. This is because we used 24 hours whereas the Fuzz4All paper
did not mention how much time was used for bug finding, and its reported bugs were
in C++ rather than C.

and EvoGFuzz [4] generate test cases based on a given grammar
and perform mutations on them. They are closely related to Kitten.
NAUTILUS andGramatron are coverage-guided fuzzing techniques
that do not rely on an externally provided seed corpus, whereas
Grammarinator and EvoGFuzz are grammar-based fuzzers that ben-
efit from an initial corpus. Kitten not only leverages the corpus but
also employs mutation strategies designed for compiler testing,
closely mimicking the behavior of LLM-based approaches. This
establishes Kitten as an effective black-box baseline for evaluat-
ing LLM-based methods. In addition to grammar-based generation,
mutation-based generation [6, 7, 16, 27] is also employed. Designing
mutation strategies is not straightforward. EMI-basedmutation [10–
12, 23] applies semantics-preserving transformations to detect mis-
compilation. These approaches have uncovered numerous bugs in
compilers for specific languages, but writing generation rules or
mutation operators for each language requires significant manual
effort. Beyond DL-based techniques [3, 13, 17], recent LLM-based
approaches [8, 28, 29] leverage large language models [14, 19] to
generate diverse, language-agnostic code, significantly reducing
engineering effort. As a continuation of prior work [26], our study
further evaluates LLM-based approaches and presents Kitten as a
reproducible, language-agnostic baseline.

6 TOOL AVAILABILITY
For reproducibility and replicability, we have open-sourced Kitten
at https://github.com/uw-pluverse/perses/tree/master/kitten and
made all artifacts publicly available at https://doi.org/10.5281/zenodo.
15044228. A demo video showcasing its usage is available at: https:
//youtu.be/hVqZBxRTr_4.

7 CONCLUSION
The emergence of LLMs has introduced new avenues for generating
test programs; however, using traditional methods as baselines can
lead to unfair comparisons. Thus, we propose Kitten as a baseline
for LLM-based compiler testing tools. Kitten is a language-agnostic
compiler testing tool that generates new test programs by mutating
an existing corpus. Experimental results show that Kitten outper-
forms Fuzz4All in coverage on GCC, LLVM and Rustc, achieving
48.3%, 9.9% and 33.8% higher coverage, respectively. Moreover, dur-
ing the experiments, Kitten identified 19.3 bugs in GCC, 20.3 bugs
in LLVM, and 15.7 bugs in Rustc. Since its development, Kitten has
identified a total of 328 bugs across various compilers. Based on
these evaluations, we strongly believe that Kitten serves as an effec-
tive baseline for LLM-based compiler testing tools. Kitten, as well
as the evaluation scripts, is open sourced to benefit future research.
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